IOSR Journal of Electronics and Communication Engineering (IOSR-JECE)
e-1ISSN: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver. IV (Mar - Apr.2015), PP 15-21
www.iosrjournals.org

A Generic Randomization Framework Architecture for Test
Execution in Automated Testing Of SoC

Subinoy Das', Surendra Shamanna?
L(IFIN ATV PSV, Infineon Technologies India Pvt. Ltd., Bangalore, India)
2(IFIN ATV PSV, Infineon Technologies India Pvt. Ltd., Bangalore, India)

Abstract : Conventional directed tests lack the flexibility to cover different variations of test configurations. To
overcome the problem and obtain better coverage, randomization is adopted. Generic randomization framework
for test execution in automated testing of SoC is effective for generating real time stimulus that covers variations
in test configurations such as different functional modes, register configurations, and network data packets. It
provides a way to capture the state of the DUT (Device Under Test) at randomly generated parameter
configurations. It prevents the selection bias and also accidental bias. It eradicates the origin of bias and
provides better bug fixation in automated testing of SoC in post-silicon validation.

Keywords: Automated Validation Execution Flow, Post Silicon Validation, Randomization Framework, Test
Automation

I. Introduction

Due to high complexity of modern designs and increasing pressure to reduce their time-to-market, bugs
can escape the pre silicon verification environment. Therefore in order to check for extreme cases and escaped
bugs post silicon environment is used effectively. In order to achieve the “zero defect SoC” (System on Chip), it
is required to check whether all the possible configurations/features of the SoC are working as expected or not.
This involves testing of SoC using huge number of tests manually and consumes a lot of time, and is error prone
as well. Thus, automation reduces the process time for the validation of SoC. This can be done by using an
automation tool to execute the test flows and writing a suitable process for controlling the test execution on the
DUT (Device Under Test). Randomization framework forms a part of the automated SoC validation process.
The randomization automation framework can configure test parameters and pass them to the DUT, and
generate status report.

Generic randomization framework provides a way to capture the state of the DUT. It provides
randomly generated test configurations for test execution. Absence of bias means more reliable tests for
automated SoC validation process. Ultimate goal of randomization is to ensure that each configuration of
parameters is equally likely to be assigned to the test execution, so that extreme cases are checked and better
coverage is obtained.

Il. Scope Of Work

Generic randomized test framework architecture automates the generation of random test
configurations for test execution. It provides a way for passing execution parameters to the DUT and save the
recorded CPU state build up. This saved state buildup of the DUT is used to bring it back to the last known state
just before failure and then execute the smaller set of execution parameters to the point of failure, thus requiring
lesser execution time. Randomization framework enables the execution of smaller set of configurations more
frequently and requires shorter reproduction time. Generic randomization framework will generate a random set
of reproducible parameters and pass it to the test executable. After accepting the parameters of the framework,
the test will carry out its operations for validation of SoC. Generic randomization framework is solely
responsible for the passing of random reproducible parameter values to the test executable at run time.

I11. Methodology

Randomization framework consists of designing a process that can be run through the automation tool
and it will start execution of the test on the DUT. ”Fig. 1” shows the basic block diagram of the randomization
framework. “Fig 4” shows the features/functions in the randomization framework.

Selection of parameters will be random in nature and constant for a particular seed number and seed
type, so that the effect is reproducible and repeatable. The set of selected parameters/test configurations will be
passed to the DUT, and then the DUT will be reconfigured repeatedly with/without performing any reset for the
next iteration cycles based on the number of seed iterations.

DOI: 10.9790/2834-10241521 www.iosrjournals.org 15| Page

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

Randomization Framework

Randomization Framework

Seed Generation
Incremental/random

Seed generation
Parameters

TestCase Running on DUT

Random Parameter
Continuous/Discontinu Selection
ous test execution
(el B el Hard Reset TestCase Start
Random
parameter Test Entry € Write the Test Entry
selection attern
Test Test Template rits ;:‘: = —
Configurations running on the DUT
) Configuration
on validating Resume Test
Monitor Test platform Write the End Test
coverage Pattern
Result Extraction
Extraction Sead Numben
Figure 1. Randomization framework block diagram Figure 4. Functional flow for the randomization framework

Random value generation- Generation of randomization parameters includes obtaining the random
numbers through a random number generator based on a specific seed number [Input Value] ,so that the event is
reproducible. The randomly generated parameter values are then constrained by user-defined
continuous/discontinuous limits. And selected parameter values are passed to the test execution. This technique
maintains complete randomness of the assignment of parameters to a particular test executable configuration.
Seed number forms the nodes for the chain of random parameters generated. If seed number and seed type are
known at any node point, the set of events can be reproduced again.

/P

1/P

Seed_num Randomized Seed_num Randomized
=n parameters =n parameters
generated ted

Incremental seed type Random seed type generatel

. Random
Randomized Seed_num Randomized
\ parameters =x %} parameters
enerated
ncremental seed type g generated

Random seed type

\ Randomized
\ parameters

generated

Random
Seed_num
=m

w Randomized
\ parameters

generated

Figure 2. Random number generation using incremental seed type Figure 3. Random number generation using random
seed type

Incremental / Random Seed Type - Incremental seed number introduces a single level of
randomization. In this, seed number is incremental in nature. Based on the seed number, the random
parameters are selected from user-defined parameter constraints forming single level of randomization. ”Fig 2”
shows the generation of random parameters using incremental seed type. Random seed number introduces two
levels of randomization. In the first level, seed number is randomized and, in the second level depending on seed
number the random parameters are selected from user-defined constraints. ”Fig 3” shows the generation of
random parameters using random seed type.

DUT Reset once / Reset on every test configuration - Reset once /Reset on every test configuration
can be controlled by the “single reset” flag option. If “single reset” flag is set, then DUT will reset only once,
the next test configurations will be passed without resetting the device. Resetting only once ensures CPU state
buildup. If ‘single reset’ flag is not set, then DUT will reset on every iteration before passing the test
configurations. Resetting on every iteration ensures the recovery of the DUT from failure, before passing test
configurations.

Synchronization between Test execution and Automation flow - For maintaining synchronization
between test execution and automation flow, shared addresses of DUT are used. Using automation tool’s built-in
functions for memory reading and writing, control words can be used for establishing a semaphore mechanism

DOI: 10.9790/2834-10241521 www.iosrjournals.org 16 | Page

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

to pass configurations from automation flow to the test execution, and get results back from test execution to the
automation flow.

Test considered - For validating the generic randomization framework, a use-case of SENT (Single
Edge Nibble Transmission) Normal Frame is considered whose intent is to check for all possible frequencies
and data values for the SENT Normal Frame Format by configuring the GTM (Generic Timer Module) for
generating these SENT frames. “Fig. 5” shows the automation tool’s GUI (Graphical User Interface) for the
randomization framework, test parameters can be entered in continuous/discontinuous parameter format.
Continuous/Discontinuous parameters can be specified in [min-max] /[valuel, value2, value3...] format.

Table 1 shows the “Randomization framework field values” which is same for all tests. Table 2 shows
the “Test execution parameters” which are specific to the SENT Normal test.

Considered Test’s Flow -

Step [1].Begin.

Step [2].Initialization of GTM.

Step [3]. Test accepts selected parameters and test iteration from the Randomization framework through shared
addresses, using semaphore mechanism.

Step [4]. Then test performs frame and CRC (Cyclic Redundancy Check) calculations, and loads data into the
FIFO (First In First Out). Then GTM and SENT are configured to send the data.

Step [5]. 1t waits for 500 interrupts, for the data to be received in the SENT RD (SENT Receive Data) register.
Step [6].After that counter and ATOM (Advanced Routing Unit connected Timer Output Module) channel is
disabled, compare and shadow registers are cleared.

Step [7]. Then, based on the test iteration which is being passed by the Automation flow process, step[3]-step-
[6] is performed again in an iterative way.

Step [8].Exit.

Table 1: Randomization Framework Fields Table 2: Sent Normal Frame” Test Execution Parameters

Field Name Field Description
- - Test Test Parameter | Test Acceptable

Config file C.onﬁgura‘[lon file with respect to the DUT Parameter Name Range
Hex file Binary file to be executed on DUT Number
MC _boot_config | Boot configuration file for the
file MC(Management Control)flow 1 Data Nibble 0x1-0xf
TimeOQut Timeout time for test execution 2 Data Nibble 0x1-0xf
Program Selection of core [0/1/2] for downloading test 3 Data Nibble 0x1-0xf
execution by executable. 4 Data Nibble 0x1-0xf
Is Serial Prints | Enable/Disable Serial prints for the result 5 Data Nibble 0x1-0xf
Enabled? extraction during test execution 6 Data Nibble 0x1-0xf
Seed Type? Incremental/Random Seed type for random 7 Cl.m.:k Ticks 0x1-0x5a

) number generation 8 Divider mode 0x0-0x1
Seed Number Based on this value, random parameter values 9 SENT Channel | 0x0-0x9

will be generated for the test 10 SENT ALT. | 0x1-0x2
Seed Iteration Number of seeds used for test execution. Channel
Parameter[1-30] Test execution parameters.] min-max]
/[valuel, value2,.....]
Single Reset DUT Re_ser once/Reset on every test
= configuration

Randomization framework Process flow -

Step [1]. Begin.

Step [2]. Fetch the seed number, seed type, “single reset” and seed iteration for the randomization framework and
hex-file, configuration file, MC boot configuration file for the SENT Normal Frame test from the user.

Step [3]. Fetch the test parameters from the framework.

Step [4]. The parameters in [min-max]/[valuel,value2,value3....]format is
hexadecimal format for transferring it to memory.

Step [5].If “single reset” field is set, then seed iteration becomes equal to the test iteration, and if this field is not
set then test iteration becomes equal to unity.

Step [6]. Downloading of the test executable for SENT Normal Frame test takes place in the SoC, and just after
that pre-configurations like initializations for clock, and address definitions are done.

Step [7]. Based on the “single reset” flag set or not in the framework hard reset is being performed for the SoC .If
“single reset” flag is set, hard reset is performed only once otherwise reset is performed on every seed iteration.

separated and converted to

DOI: 10.9790/2834-10241521 www.iosrjournals.org 17 | Page

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

Step [8]. The test writes a control word [Entry pattern] in the shared memory to indicate beginning of the test
execution, and reads number of test iteration which is being passed from the automation tool process through
shared memory address.

Step [9]. Test polls for the control word [resume pattern] in the same memory address which is going to be
written from the automation flow, to resume the test.

Step [10]. Based on the seed number and seed type, a random parameter value will be selected in the user
specified parameter range.

Step [11]. The random values generated, are written to the shared memory addresses based on the humber
of parameters from the automation process.

Step [12]. After that, the control word for resuming test is written from the automation process .With this,
the test resumes and reads all the randomized parameter data values from the shared memory addresses.

Step [13]. The test executes for all the specified parameter configurations from the framework and the
data is transmitted from one port to another

Step [14]. The functional coverage of the test can be monitored using prints from the test directly on to
automation tool’s log file, which is shown in the result section

Step [15]. After the test is executed, the test will write a control word to indicate the end of the of the test
execution.

Step [16]. Based on the number of seed iterations and “single reset” flag being set or not, process

iterations are performed. If the “single reset” flag is set, the steps 9-15 are repeated. And if the flag is not set, the
steps from 7-15 are performed in an iterative way.

Step [17]. Exit.

[e Tese (et]
i Test Propetties | Charactenzation Options | ‘
| Name [fash downioad Description |
(Number o Unique ID: -7025766708 ‘L
| HordBn S soten: [||
|
Il Device [Ge =1 ||

Unit = ~
[Action | v~ Test by extemal Language) ~]
Ext. Script [AashDownload ol ~]

i| ~options

:i Author: Subinoy Das.Surendra S Date: 22/08/2012 Version =

M Notes: Key :

Product(version): TC27x(All)
! Config file [icver_valx/automation/cfg/ TnBoard_TC27%C_core0_das cfg Search
‘ Hex file |C:/Users/DasSubin/Desktop/sram 1 hex Search
3 MC_boot_corfig_file: [MC_boot_corfig_file Search
| Time out [so Program execution by: [Core0 |
} [V s Sedal Prints Enabled? Seed_Type? [Random ~|
} Seed_Number 22— Seed_teration R
} Parameter1 [eaoes Parameter2 [caes
Parameter3 [eaes Parameterd [eaes
' ParameterS [eaoe Parameter6 [eaods
‘ Parameter? S Parameters o —
Parameterd ©x0-0x9 Parameter10 [eaea
Parameter11 o Parameter12 o
Parameter13 o Parameter14 o
Parameter15 o Parameter16 o—
Parameter17. R Parameter18 e
Parameter19: e Parameter20 o
Parameter21 e Parameter22 o
| Parameter23 o Parameter24 o
| Parameter25 . Parameter26 o
| Parameter27. o Parameter28 o
| Parameter29 e Parameter30 o
[~ Single_Reset
|
[oK | Cancel | J

Figure 5: Automation tool’s Randomization Framework GUI

IV. Result Analysis
Randomization framework has been successfully implemented and randomized parameters are being
selected between the range specified by the user, and are passed from automation tool’s GUI to the test
execution. See the appendix section for results in more detail.

DOI: 10.9790/2834-10241521 www.iosrjournals.org 18 | Page

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

V. Conclusions

Randomization framework solved the problem of biasing in test execution for validation of SoC.
Instead of user selecting any parameter value, it is required to provide the range within which values are
required to be generated as per the data specifications. This is better than the standalone framework as it offers
more coverage features in validation.

Thus, generic randomization framework for DUT would help to stress SoC components and gives user
run control through automation software setup. It also helps to extract coverage and debug information from
time to time through execution of test.

VI. Future Scope

The work has a potential to be extended by adding some more features, and its application on other areas as

follows:

[1] Cases of interdependent parameters and scenario randomization where different test execution scenarios can
be randomized.

[2] Application of the randomization framework in areas of communication between two systems using
different randomized communication protocol.

[3] Application of Randomization Framework for Memory testing-where different memory blocks are
considered randomly for reading/writing to test different memory accesses.

Acknowledgements
Thanks to Infineon Technologies India Pvt. Ltd., Bangalore for providing an opportunity to carry out
this work. Thanks to Sadashivaiah Shivaprasad for his overall management for carrying out this project work.
Thanks to Pammi Sesha (IFIN ATV PSV) for his support. Thanks to Mr. Rahul Thati (IFIN ATV PSV) for
validation of the framework using SENT test. Our special Thanks to Ramasamy Subramanian for his valuable
inputs towards the project work.

References
[1]. D.Ghosh, R.Subramaniam, V.Murthy, “A Randomized Methodology for Post-Silicon Validation of CAN and other Communication
Modules”, IN: Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on 22-25
Aug. 2013.

Appendix
In the “Fig. 6(a)-(b)” and “Fig. 7(a)-(b)” corresponding markings indicate-
[1] Downloading of the test executable to the DUT.
[2] Seed number and [3] Seed type.
[4] Selection of random parameters based on the seed type —incremental/random, and seed number.
[5] Control word [entry pattern]- written from the test .
[6] Writing the parameters to the shared memory locations.
[7] Control word [resume pattern]-written from the automation process.
[8] Prints from the test on the automation tool’s result log file.
[9] Control word [end pattern] —written from the test.
[10] DUT reset once/reset on every iteration.

”Fig 6(a)” and “Fig 6(b)” show the result log obtained while downloading the test executable in flash
using single board randomization framework with incremental seed type for three seed iterations and resetting
the DUT on every test iteration, to ensure the recovery of the DUT from failure.

“Fig.7(a)” and ”Fig.7(b)” shows result log generated in randomization framework for single board
randomization framework with random seed type for three seed iterations without resetting the DUT more than
once, to ensure a CPU state buildup. Random seed type is different from the incremental seed type, as the seed
numbers generated are random in nature depending on their previous seed number.

DOI: 10.9790/2834-10241521 www.iosrjournals.org 19 | Page

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

tmemtocl %! _found
memtocl Reszme Test_Successful
_tzemtool 8t _execution begins....
00000 Teols/Jazz/TC27xB-Aurix/cests/f1as) Joad_twe board.tfl
00001)_2015-01-27_11:41:17 ReadTestCasallessages (50)
00001 17_Tue_27_Jan_2015_-_{(lccal time| H 7_Tue_27_Jan_ 20” I Tes case beqin HHHEHHIIII
raemtool 00000 BeTer.LC27xe. Vers £1CATLD: 11X -
' 1hads ¢ e - Hit read from Tencry HHFHHHIHE
bneri S 054 --“-”'-""-’-‘ DOECH/UAAA/DENRED/ALED. Senc): - S Frash acd CRC_SalealaTicos TOE M
‘Tmamcool 00000 i)
‘tmemtool 00000 sa:ch To_run_Mede 1
tmemtool 00000 Total i _Entered : 1
_compare and shadew :
tzeztool 00000 _Entered
TON
Ememtool 60000
Seed Number:12
Stmemtool 00000 Fazametez musber 1
tzemtool 00000
Tmemtool 00000 Parameter number 3
JTmemtool 00000 Farameter muper 4
Tmemtool 00000
Tmemtool 00000

=e=tcol
tzextool
Tzextool et
‘tmextool 00000 Jeemocl 0000
memzool 00000
Seed Number:14

tmextcol 00000 * ssssesTestcase Dovnloded and_,Hard Reset Done
‘tmemrcol 00000 Eacry pactern=0x1100110 found Farasster nmker
zaeatool 00000 Test_Entzy 10 Fa:az:e:::mtu_

1 00000 Test_ Entzy azeter
‘Tmemtool 00000 e3tCase i 5 Ea.a:zte:_:::ex_
‘tmemtool 00000 writing_at_address::0x70002604, 0x4 kept ARt
tmemtool 00000 70002608, 0x6 | Paranecer_oaiber
‘tzemtool 00000 0X7000260¢, 0x3 Fazameter :mbe:
taexmtool 00000 70002610, 0x% Farazseter : :r.zh»x
tmemtcol 00000 2614, 0x€ Pazemeter nmber
Je=tcol 00000 0x70002618, 0x€ Faramster ; .r.xzﬂz
‘tmestool 00000 0x1000261¢, Oxéd faxaseter_ namter
memrool 00000 writing ac
Smezteel 00000 o
‘taestool 00000 »mmeze.ax‘
‘tmemtool 00000 _cont 1
A:mmol 00000 Test resume tern = Oxl fou:
_tmentocl
_tmemtool ST_execution begins....
_tmemocl ReadlestCasedessages(50) R
_tmemool $3EEEEEEEEE Tasr case Degun HREEEIIREEENE 0xT000£610, 0x¢
_teemtool $3844488888 Dana read from memory HEHHHIEEEEE X10002614, 003
_tmemtool calculations DOKE X1000£618, 0xe
_mt:c} m_FIEO_QHHHHHH x7000£61c, 0x2a
_tmemtool 10008620, 0x)
“tmemtool iR Crecting e
_tmextool Py D'sab'.:."q .\'Q' chanze 1comparel v AR
_tmastool i data in the SINT RD) ¢t writing at address:
“teemtool poniis :m Pass mommm SrersnaTesieaTanr MMW“‘_:O '\a.e""""""""“""
_teeamcol Y 8 | patern an‘(r _memory $iEiEdEEEEE
."5':22; case Eods HTHTHIN Test_resume patcern = 0xl found
“tmemtoal sraction Dometeesssssssseriiitiesis
- - a..u‘;est‘mw:ssful
_tmemteol 00000Zest_execution ends.... +000 1857 _eXECTTION Degins. ...
_tmemtool 00000 End pattern =0x10 found SeadTestizssensages (30

2 ¥ I Teay case tagin HEHEHHEH
taemzool 00000 £
T R Dana | “ea‘ frem mawory HiEEEEHE

$HHH Trans and CRC Calcalations DO $HHHHHEHE
4 Dara Toaded 1ot 1 smmmm

Parameter ..mr

Eus m;mmm
eturn to zenory $iiEE

Parameter :.._hex

T

Exiting due 10 !

tzextool

Parameter nusber | ¥
Parameter nusber | 1 _SELECTED:T:0x1 tmextool 00000 ..
Paramete: ..x:tex 10

toeazool 00000

End pactern =0x10 fousd

tzeztool 00000 #essessasesarsinabng parrern Scoessfultéesssseskinissirma s
"

tmeasool 00000 P -01
00000 001 001
00000 489950 ms (00:0:9.950)
v:‘.:.nq ac | " addres
writing at_sddres: 000£628, 0x1. - - N .
FrhThetest ticuration Don Figure.6(b) Result log obtained for randomization

framework ”SENT Normal Frame Test” using
incremental seed type and “single reset” flag unset.
Figure.6 (a) Result log obtained for randomization framework

”SENT Normal Frame Test” using Incremental seed type and

“sinole reset” unset.

DOI: 10.9790/2834-10241521 www.iosrjournals.org 20 | Page

A Generic Randomization Framework Architecture for Test Execution in Automated Testing Of Soc

 congaze tad o

PRI

Artertti e RUTIONTIATION FRAMENER

o
 PARNAETER_SELECTED:
ARRY

Sesd Bumber: 58776

waload

nalosd

nnload 00000 Test_resume patters = (xi_found ounloed
waload Resuze Tes: Sucosssful

waload 0000Tesc ¢ | begins....

wnload I

Syseaafzl eI

Riiiiiiiiil] DORZ_stsdsniidint
L)

[QT .
L 1_compare_and she : N!:O;géim
I _HHE AT

O H
sseof LU
compars

09 2L 220 8
ckldfe pHH

+eaaToST_exOCUCiCR e0dS....

ovnload

SEILIIEE ey

ovnlcad
ownload
ovnload

ovnload

s Figure.7(b) Result log obtained for
randomization framework ”SENT Normal Frame
Test” using random seed type and “single reset”
flag set .

ownlead Resme Test_Successful
ovnlced «eaTo82_e2ecy s,
ownload Bex sediessages (50)

Figure.7(a) Result log obtained for randomization
framework “SENT Normal Frame Test” using
random seed type and “single reset” flag set.

DOI: 10.9790/2834-10241521 www.iosrjournals.org 21 | Page

